Mitigating Future Arsenic Catastrophes within Asia: An integrative study of processes controlling arsenic release

Scott Fendorf
Karen Seto
Chris Francis
Asian Water Crisis

>600 Million People without Safe Water

A result of Pathogens and Poisons
Arsenic in Drinking Water

>100 Million People Drinking Hazardous Levels of Arsenic
Conditions in Bangladesh

Exposure

60,000,000 people (46%)

Arsenosis

2,000,000 people (1.8%)

Skin Cancer

>200,000 people (0.2%)

Internal Cancers

3,000-7,000 people/yr

Based on epidemiological reports from 2003
Critical Need: Forecasting

1) Predict locations of low-arsenic groundwater
2) Project changes in arsenic concentration (including impacts of land use change).
Needed Expertise

To understand the processes driving arsenic concentrations we needed:

1. Geo/soil chemistry – S. Fendorf
2. Microbiology – C. Francis
3. Hydrology – S. Benner (established)
4. Land Use – K. Seto
Major River Systems of Asia being Impacted
Arsenic Distribution

[As]
- 850+ µg/L
- 400 – 850 µg/L
- 100 – 400 µg/L

Depth (m)
- 0 m
- 60 m
- 3000 m

Distance (m)
- 0 m
- 3000 m
Clay Aquifer River

As-FeS

As transport

As(V)

As(V)

As(V)

As(V)

Depositional As flux \approx \text{Groundwater efflux}

Predicting Arsenic Distribution within Aquifers

Measured

Simulated

CONTRIBUTORS

- Ben Kocar
- Matt Polizzotto
- Samantha Ying
- Shawn Benner,

COLLABORATORS

- Resource Development International, Cambodia
- Charlie Harvey, MIT
- Uli Mayer, Univ. British Columbia

FUNDING

Woods Institute, EVP program
Thanks
Why is arsenic in the groundwater?
Source and liberation process(es)?
Why Does Arsenic Come Off the Solids?
Arsenic Source and Transport

- Coal Seams and Sulfide Mineral Outcrops
- Arsenic Bearing Iron Oxides (rust)
Arsenic Source and Transport
Arsenic Transport and Deposition
Arsenic Transport and Deposition
Arsenic Release to Water

Bangladesh: Dry Season
Bangladesh: wet season
How Arsenic Gets into the Water: Bacteria Again!

Eating
- Food
- CO₂

Breathing
- As(V) in sediment
- As in water

Break-down of iron minerals and chance in arsenic chemistry
Controlling Processes

Sediment Transport
Deposition

- Clay
- Aquifer
- River
- As-FeS
- As(V)
- Wetlands
- Deposition
Release

Release is initiated upon sediment burial
Aqueous-Phase Transport

Clay

Aquifer

River

As-FeS

Groundwater Flow

As transport

Wetlands

As(V)

As(V)

[As(III)]

[As(III)]
Arsenic Cycle

Depositional As flux ≈ Groundwater efflux
Options?
Filtering Groundwater

More than 3 million contaminated wells
No existing infrastructure for mass disposal

What do you do with ‘used’ filters?
Rainwater Harvesting
Filtered Surface Water
Deep Wells

- Cost
- Longevity
Need a Portfolio of Options

Arsenic-free Shallow Well?
- yes
 - Use shallow well
- no
 - Viable deep-well?
 - yes
 - Use deep well
 - no
 - Sufficient rainwater storage?
 - yes
 - Use rainwater harvesting
 - no
 - Effective surface water filtration?
 - yes
 - Use filtered surface water
 - no
 - Arsenic filtration?
 - yes
 - Use filtered groundwater
 - no
 - Other